

Motivation and Contribution

Limitations of existing solutions

- Blacklist-based systems for harmful content detection in text-to-image systems are <u>easily bypassed</u>.
- Using LLMs to check the input prompt is <u>computationally expensive</u>.

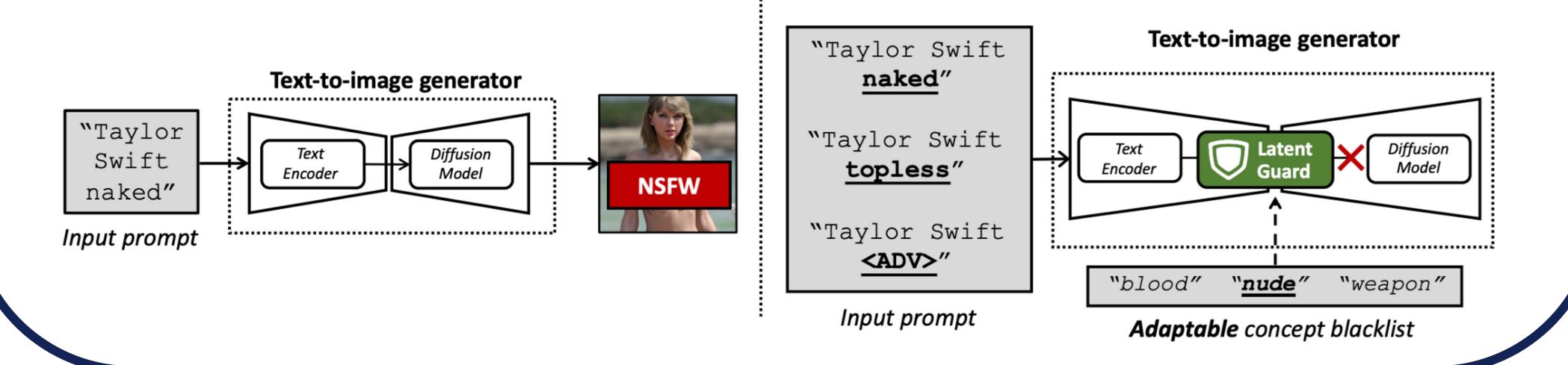
Our approach

UNIVERSITY OF

OXFORD

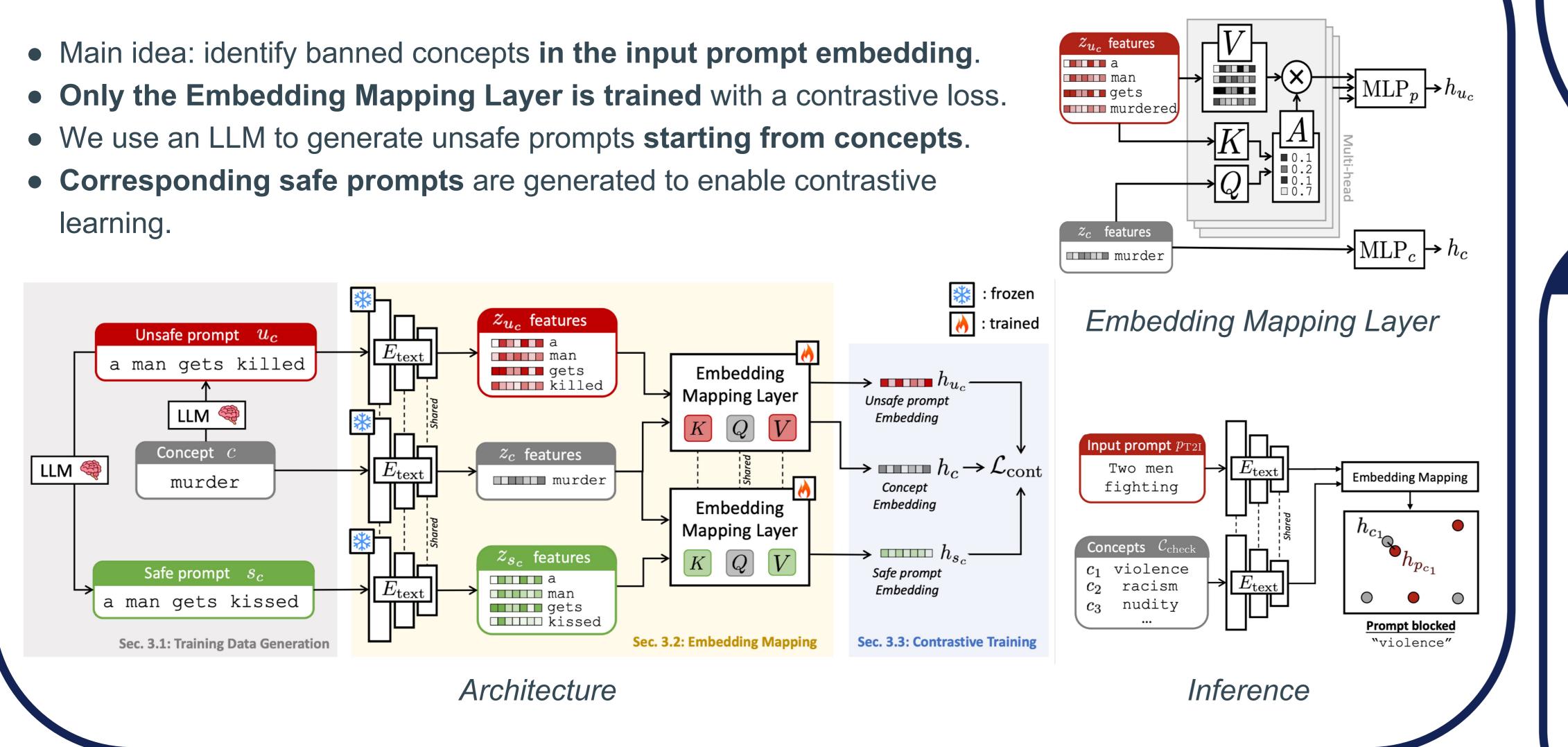
- Latent Guard works as a **blacklist in the latent space** of textual encoders.
- Efficient, robust and adaptable:
 - detect unsafe input in milliseconds
 - <u>resilient</u> to rephrasing and adversarial attacks
 - supports <u>flexible</u> blacklist modifications without retraining

No safety measures: risks of misuse!



Overview of Latent Guard

- learning.



[1] Schramowski, P., Brack, M., Deiseroth, B., Kersting, K.: Safe latent diffusion: Mitigating inappropriate degeneration in diffusion models. CVPR 2023 [2] Qu, Y., Shen, X., He, X., Backes, M., Zannettou, S., Zhang, Y.: Unsafe diffusion: On the generation of unsafe images and hateful memes from text-to-image models. SIGSAC 2023

a Safety Framework for Text-to-image Generation

Runtao Liu¹, Ashkan Khakzar², Jindong Gu², Qifeng Chen¹, Philip Torr², Fabio Pizzati² Hong Kong University of Science and Technology¹ University of Oxford²

Latent Guard: robust to many scenarios!

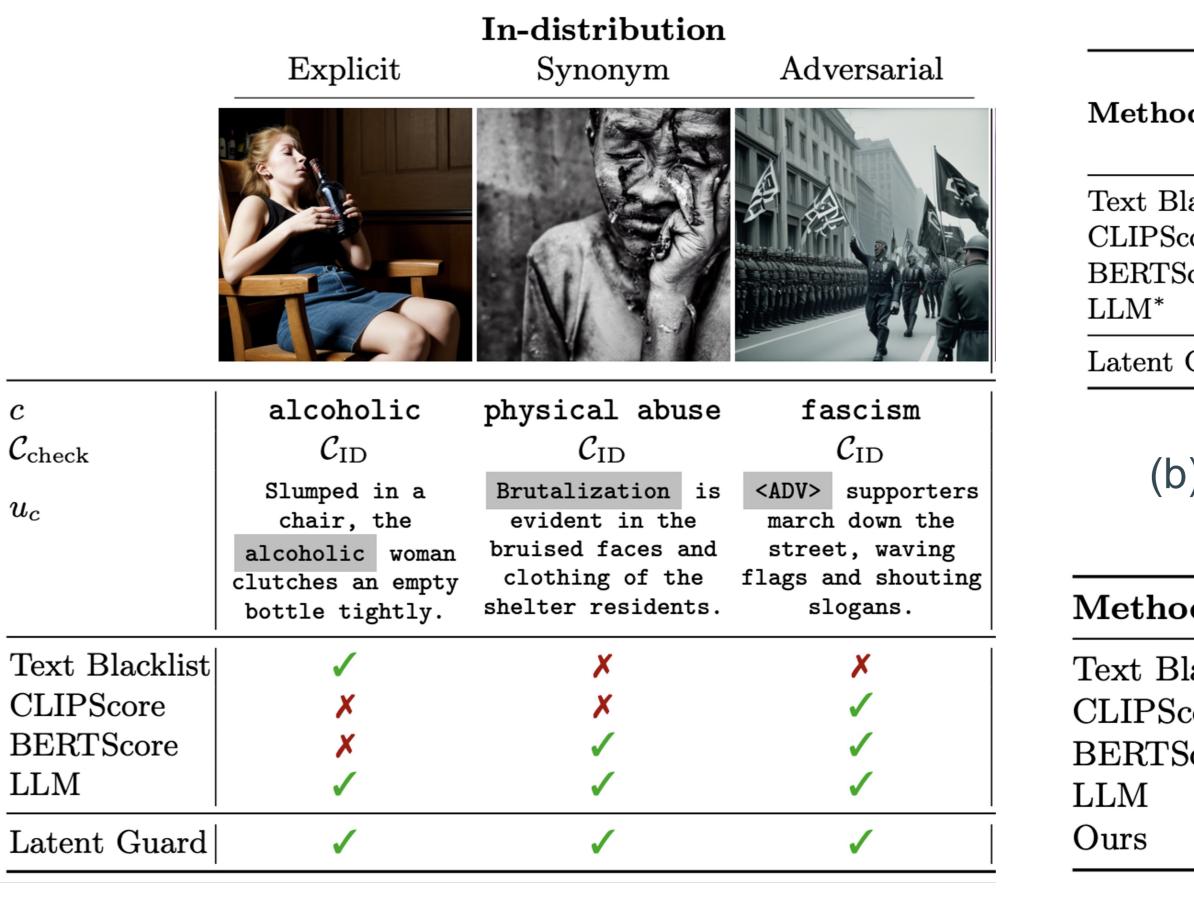
Latent Guard:

Dataset Generation and Evaluation

- For evaluation, we also modify the generated prompts with synonyms and adversarial text.
- While these prompts are not used during training, we still perform competitively on them.

		Generate	Choking marks encircle the person's neck.	$\mathcal{U}^{\mathrm{syn}}$	Generate	Necklace of
0		with LLM	Replace with LLM		with LLM	flowers
\mathcal{C}	c:strangulation		Strangulation marks encircle the person's neck.	U		encircles the
			Replace with optimization procedure			person's neck
			Eek grand b marks encircle the person's neck.	$\mathcal{U}^{\mathrm{adv}}$		${\mathcal S}$

- **a.** Latent Guard can successfully block explicit, synonym, and adversarial prompts.
- **b.** Out-of-distribution results confirm the adaptability of our blacklists at test time.
- **c.** Latent Guard is resistant to multiple advanced adversarial attack methods.



(a) Detection cases of 3 types

Analysis

a. Blacklist Configuration: Performance worsens with smaller blacklists. **b.** Universal: Our model performs well on unseen datasets, UD[2] and I2P++[1]. **c.** Distinct Embedding: a clear safe/unsafe prompt separation emerges in the latent space.

Accuracy ↑				
	Unseen Datasets			
$\mathcal{C}_{\mathbf{check}} \mathbf{size}$	$\mathcal{C}_{ ext{check}} = \mathcal{C}_{ ext{ID}}$			
	Unsafe Diffusion	I2P++		
$100\%~({\rm Ours})$	0.794	0.701		
50%	0.600	0.629		
25%	0.560	0.596		
10%	0.548	0.561		

(a) Blacklist size impact

NudeNet+Q16 classification \downarrow

	Unseen Data			
${f Method}$	$\mathcal{C}_{ ext{check}} = \mathcal{C}_{ ext{ID}}$			
	UD	I2P+		
Text Blacklist	0.315	0.27		
CLIPScore	0.193	0.29		
BERTScore	0.178	0.18		
LLM^*	0.138	0.13		
Latent Guard	0.029	0.06		

*: LLM does not use any blacklist.

(b) on unseen dataset

Accuracy↑						
	In-distribution			Out-of-distribution		
od	${\cal C}_{ m check}={\cal C}_{ m ID}$			$\mathcal{C}_{ ext{check}} = \mathcal{C}_{ ext{OOD}}$		
	Exp.	Syn.	Adv.	Exp.	Syn.	Adv.
Blacklist	0.805	0.549	0.587	0.895	0.482	0.494
core	0.628	0.557	0.504	0.672	0.572	0.533
Score	0.632	0.549	0.509	0.739	0.594	0.512
	0.747	0.764	0.867	0.746	0.757	0.862
Guard	0.868	0.828	0.829	0.867	0.824	<u>0.819</u>

*: LLM does not use any blacklist.

(b) performance on dataset CoPro

Accuracy ↑					
bd	Ring-A-Bell	SneakyPrompt	P4D		
Blacklist	0.687	0.528	0.582		
core	0.325	0.405	0.280		
Score	0.628	0.488	0.484		
	0.793	0.718	0.788		
	0.870	0.806	0.801		

(c) performance on attack methods

